Ternary codes and Jacobi forms

نویسندگان

  • YoungJu Choie
  • Patrick Solé
چکیده

In this paper we study the bivariate theta-series which can be attached to the complete weight enumerator of ternary codes. We give an injective homorphism between the ring of invariants of a certain matrix group and the ring of Jacobi modular forms. This generalizes to Jacobi forms a result of Brou% e and Enguehard [Ann. Sci. % Ecole Norm. Sup. 5 (4) (1972) 157–181] on classical modular forms. c © 2003 Elsevier B.V. All rights reserved. MSC: Primary 11F50 05E99

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ozeki Polynomials and Jacobi Forms

A Jacobi polynomial was introduced by Ozeki. It corresponds to the codes over F2. Later, Bannai and Ozeki showed how to construct Jacobi forms with various index using a Jacobi polynomial corresponding to the binary codes. It generalizes Broué-Enguehard map. In this paper, we study Jacobi polynomial which corresponds to the codes over F2f . We show how to construct Jacobi forms with various ind...

متن کامل

Codes over F4, Jacobi forms and Hilbert-Siegel modular forms over Q(sqrt(5))

We study codes over a finite field F4. We relate self-dual codes over F4 to real 5-modular lattices and to self-dual codes over F2 via a Gray map. We construct Jacobi forms over Q( √ 5) from the complete weight enumerators of self-dual codes over F4. Furthermore, we relate Hilbert–Siegel forms to the joint weight enumerators of self-dual codes over F4. © 2004 Elsevier Ltd. All rights reserved.

متن کامل

Jacobi Polynomials, Type II Codes, and Designs

Jacobi polynomials were introduced by Ozeki in analogy with Jacobi forms of lattices They are useful for coset weight enumeration and weight enumeration of children We determine them in most interesting cases in length at most and in some cases in length We use them to construct group divisible designs packing designs covering designs and t r designs in the sense of Calderbank Delsarte A major ...

متن کامل

Mass formula for various generalized weight enumerators of binary self-dual codes

In this paper we give extensions of the mass formula for biweight enumerators and the Jacobi weight enumerators of binary self-dual codes and binary doubly even self-dual codes. For binary doubly even self-dual codes, our formula is expressed in terms of the root system E8 embedded in C4 for biweight enumerators, while the root system D4 is employed for Jacobi weight enumerators. For self-dual ...

متن کامل

Some Optimal Codes From Designs

The binary and ternary codes spanned by the rows of the point by block incidence matrices of some 2-designs and their complementary and orthogonal designs are studied. A new method is also introduced to study optimal codes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 282  شماره 

صفحات  -

تاریخ انتشار 2004